The Effect of Molar Mass and Charge Density on the Formation of Complexes between Oppositely Charged Polyelectrolytes
نویسندگان
چکیده
The interactions between model polyanions and polycations have been studied using frontal continuous capillary electrophoresis (FACCE) which allows the determination of binding stoichiometry and binding constant of the formed polyelectrolyte complex (PEC). In this work, the effect of the poly(L-lysine) (PLL) molar mass on the interaction with statistical copolymers of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate (PAMAMPS) has been systematically investigated for different PAMAMPS chemical charge densities (15% and 100%) and different ionic strengths. The study of the ionic strength dependence of the binding constant allowed the determination of the total number of released counter-ions during the formation of the PEC, which can be compared to the total number of counter-ions initially condensed on the individual polyelectrolyte partners before the association. Interestingly, this fraction of released counter-ions, which was strongly dependent on the PLL molar mass, was almost independent of the PAMAMPS charge density. These findings are useful to predict the binding constant according to the molar mass and charge density of the polyelectrolyte partners.
منابع مشابه
New polyelectrolyte complex particles as colloidal dispersions based on weak synthetic and/or natural polyelectrolytes
This study aims to evidence the formation of stable polyelectrolyte complex particles as colloidal dispersions using some weak polyelectrolytes: chitosan and poly(allylamine hydrochloride) as polycations and poly(acrylic acid) (PAA) and poly(2-acrylamido-2-methylpropanesulfonic acid – co – acrylic acid) (PAMPSAA) as polyanions. Polyelectrolyte complex particles as colloidal dispersion were prep...
متن کاملAdsorption of polyelectrolytes at an oppositely charged surface
We develop a scaling theory of polyelectrolyte adsorption at an oppositely charged surface. At low surface charge densities, the thickness of the adsorbed layer is determined by the balance between electrostatic attraction to the charged surface and chain entropy. At high surface charge densities, it is determined by the balance between electrostatic attraction and short-range monomer-monomer r...
متن کاملA molecular simulation study on salt response of polyelectrolyte complexes
Submitted for the MAR15 Meeting of The American Physical Society A molecular simulation study on salt response of polyelectrolyte complexes HANNE ANTILA, Aalto University, Department of Chemistry, PAUL VAN TASSEL, Yale University, Chemical and Environmental Engineering, MARIA SAMMALKORPI, Aalto University, Department of Chemistry — In aqueous solutions, oppositely charged polymers, polyelectrol...
متن کاملPolyelectrolytes: Bottle-Brush Architectures and Association with Surfactants
This thesis has the dual purpose of raising awareness of the importance of the mixing protocol on the end products of polyelectrolyte-oppositely charged surfactant systems, and to contribute to a better understanding of the properties of bottle-brush polyelectrolytes when adsorbed onto interfaces. In the first part of this thesis work, the effects of the mixing protocol and the mixing procedure...
متن کاملLipid Monolayers with Adsorbed Oppositely Charged Polyelectrolytes: Influence of Reduced Charge Densities
Polyelectrolytes in dilute solutions (0.01 mmol/L) adsorb in a two-dimensional lamellar phase to oppositely charged lipid monolayers at the air/water interface. The interchain separation is monitored by Grazing Incidence X-ray Diffraction. On monolayer compression, the interchain separation decreases to a factor of two. To investigate the influence of the electrostatic interaction, either the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017